专利摘要:
The present invention relates to a method for producing C4 bodies, preferably butyric acid and/or butanol, comprising the steps contacting an aqueous medium comprising an acetogenic bacterial cell in an aqueous medium with syngas and incubating the mixture obtained in step a) at a temperature between 0 and 100 °C for at least 30 minutes, wherein the aqueous medium comprises, in step b), ethanol and/or acetate at a total combined concentration is at least 0.1 gL
公开号:AU2013224116A1
申请号:U2013224116
申请日:2013-02-22
公开日:2014-08-21
发明作者:Thomas Haas;Harald Krispin;Liv Reinecke;Yvonne Schiemann;Dirk Weuster-Botz
申请人:Evonik Industries AG;
IPC主号:C12P7-16
专利说明:
WO 2013/124401 PCT/EP2013/053523 1 Biotechnological method for producing butanol and butyric acid The present invention relates to a method for producing C4 bodies, preferably butyric acid 5 and/or butanol, comprising the steps contacting an acetogenic bacterial cell in an aqueous medium with syngas and incubating the mixture obtained in step a) at a temperature between 0 and 100 'C for at least 30 minutes, wherein the aqueous medium comprises, in step b), ethanol and/or acetate at a total combined concentration of at least 0.1 g L-1. 10 The era of non-renewable fossil fuels is coming to an end. While chemists have been able to rely on a virtually unlimited supply of coal, petroleum and natural gas until now, the availability of such resources, formed by bacteria, plankton, plant and animal matter buried in ocean sediments over millions of years, is bound to be limiting in the very near future. Moreover, burning fossil fuels has been linked with the increase in atmospheric concentrations of C02 and 15 associated climate changes, most notably global warming. Therefore, next generation processes for the production of bulk chemicals such as butanol, butyric acid and derivates thereof, conventionally derived from fossil resources, will have to start with renewable resources, i. e. materials that are easily and, in terms of geological time scales, rapidly replenishable. 20 Industrial biotechnology, i. e. the application of biocatalysts such as enzymes or catalyticall competent organisms as industrial catalysts, offers alternatives to many conventional processes using fossil resources as input. Not only are biocatalysts able to convert compounds made from renewable materials, often agricultural or process wastes that would otherwise have to be 25 disposed of, but they do not require the use of toxic compounds and, last but not least, reduce greenhouse gas emissions compared to conventional approaches. Numerous methods for producing butanol (CH 3
-CH
2
-CH
2
-CH
2 -OH) and butyric acid (CH 3
-CH
2 CH 2 -COOH, also referred to as butyrate) and C4 derivatives thereof have been reported in the WO 2013/124401 PCT/EP2013/053523 2 prior art, but most of them rely on cracking fossil fuels and oxidising the resulting short hydrocarbons. By contrast, few processes have been described that start with carbon in the form of carbon monoxide or carbon dioxide, compounds available from exhaust gases and example syngas. 5 Syngas, a term referring to various mixtures comprising at least one of water and hydrogen and at least one of carbon monoxide and carbon dioxide, is a renewable source of carbon and is readily available throughout the world, as processes for its production using various starting materials are known, including steam reforming of natural gas or liquid hydrocarbons and the 10 gasification of coal or biomass. The use of syngas for the production of compounds comprising carbon chains has been reported in the prior art. However, the processes previously described depend on the addition of additional substrates, in particular carbon hydrates such as glucose. Processes based on 15 microbial consumption of syngas as carbon source lead to rather unsatisfactory yields of the compounds desired. Therefore, the problem underlying the present invention is to provide a method for producing C4 bodies, preferably butanol and/or butyric acid, starting from carbon monoxide or carbon dioxide, 20 preferably in the form of syngas. Another problem underlying the present invention is to provide a method for producing C4 bodies, preferably butanol and/or butyric acid, starting from carbon monoxide or carbon dioxide, which method is improved compared to state-of-the-art methods in terms of yield and/or purity 25 of butanol and/or butyric acid formed or the proportion of C4 bodies, preferably butanol and/or butyric acid, made from syngas-derived carbon atoms rather than other carbon sources present, in particular carbohydrates such as glucose. Another problem underlying the present invention is to provide a method for producing C4 30 bodies starting with syngas, wherein the yield of C4 products relative to the carbon-containing reactants other than carbon monoxide and carbon dioxide is improved, i.e. the amount of WO 2013/124401 PCT/EP2013/053523 3 carbon compounds other than carbon monoxide and carbon dioxide required for the synthesis is reduced. 5 In a first aspect, the problem underlying the present invention is solved by a method for producing C4 bodies, preferably butyric acid and/or butanol, comprising the steps: a) contacting an acetogenic bacterial cell in an aqueous medium with syngas under anaerobic conditions, 10 b) incubating the mixture obtained in step a) at a temperature between 0 and 100 'C for at least 30 minutes, wherein the aqueous medium comprises, in step b), ethanol and/or acetate at a total 15 combined concentration exceeding 0.1 g L-1. In a first embodiment of the first aspect of the present invention, the problem is solved by a method, wherein the ethanol and/or acetate is exogenously produced ethanol and/or acetate. In a second embodiment of the first aspect, which is also an embodiment of the first 20 embodiment of the first aspect, the problem is solved by a method, wherein the total combined concentration of ethanol and/or acetate is 0.5 g L-1 to 20 g L-1. In a third embodiment of the first aspect, which is also an embodiment of the first to second embodiments of the first aspect, the problem is solved by a method, wherein the syngas 25 comprises 40 to 100, preferably 40 to 95 % CO. In a fourth embodiment of the first aspect, which is also an embodiment of the first to third embodiments of the first aspect, the problem is solved by a method, wherein the syngas comprises less than 10 % C02. 30 WO 2013/124401 PCT/EP2013/053523 4 In a fifth embodiment of the first aspect, which is also an embodiment of the first to fourth embodiments of the first aspect, the problem is solved by a method, wherein the syngas comprises less than 10 % CO. 5 In a sixth embodiment of the first aspect, which is also an embodiment of the first to fifth embodiments of the first aspect, the problem is solved by a method, wherein the method comprises the step c) separating and, optionally, recycling ethanol and/or acetate from the mixture 10 following step b). In a seventh embodiment of the first aspect, which is also an embodiment of the first to sixth embodiments of the first aspect, the problem is solved by a method, wherein the acetogenic bacterial cell is selected from the group comprising Clostridium, Moore/Ia and Carboxythermus 15 and is preferably Clostridium carboxidivorans. In an eighth embodiment of the first aspect, which is also an embodiment of the first to seventh embodiments of the first aspect, the problem is solved by a method, wherein the pH in steps a) and b) is maintained between 3 and 7, preferably 4 to 6, more preferably 5 to 5.5. 20 In a ninth embodiment of the first aspect, which is also an embodiment of the first to eighth embodiments of the first aspect, the problem is solved by a method wherein step b) is carried out at a temperature between 15 'C and 45 'C, preferably 30 'C to 40 'C. 25 In a tenth embodiment of the first aspect, which is also an embodiment of the first to ninth embodiments of the first aspect, the problem is solved by a method, wherein the syngas provides more than 80, preferably more than 90 % of the carbon present initially in step a). In a eleventh embodiment of the first aspect, which is also an embodiment of the first to tenth 30 embodiments of the first aspect, the problem is solved by a method, wherein the process is run in a continuous mode.
WO 2013/124401 PCT/EP2013/053523 5 In a twelfth embodiment of the first aspect, which is also an embodiment of the first to eleventh embodiment of the first aspect, wherein step b) is carried out in the absence of carbohydrates. The problem underlying the present invention is solved, in a second aspect, by a use of ethanol 5 and/or acetate for increasing the proportion of syngas converted by an acetogenic bacterial cell to C4 bodies, preferably butyric acid and/or butanol. In a first embodiment of the second aspect, the problem is solved by a use, wherein the ethanol and/or acetate is exogenously produced ethanol and/or acetate and is preferably added to an 10 aqueous medium comprising the acetogenic bacterial cell prior to the accumulation of detectable quantities of ethanol and/or acetate produced endogenously by said cell. In a second embodiment of the second aspect, which is also an embodiment of the first embodiment of the second aspect, the problem is solved by a use, wherein acetate and/or 15 ethanol is present in an aqueous medium comprising the acetogenic bacterial cell at a total combined concentration of ethanol and/or acetate exceeding 0.5 g L-1, but not 20 g L-1. In a third embodiment of the second aspect, which is also an embodiment of the first to second embodiments of the second aspect, the problem is solved by a use, wherein the acetogenic 20 bacterial cell is selected from the group comprising Clostridium, Moore/Ia and Carboxythermus and is preferably Clostridium carboxidivorans. Without wishing to be bound by any theory, the present inventors theorise that the presence of 25 ethanol or acetate induces expression of genes essential for the conversion of syngas to C4 bodies, preferably butanol and/or butyric acid, thus increasing an acetogenic bacterial cell's capacity to metabolise carbon monoxide and carbon dioxide from syngas. 30 The present invention centers around the production of C4 bodies, preferably butanol and/or butyric acid, using an acetogenic bacterial cell. In a preferred embodiment, the term "acetogenic bacterial cell", as used herein refers to a bacterial or archaeal cell that is capable of producing WO 2013/124401 PCT/EP2013/053523 6 acetate under anaerobic conditions, preferably using hydrogen as an electron donor and carbon dioxide as an electron acceptor or carbon monoxide instead of carbon dioxide. A multitude of acetogenic bacteria have been disclosed in the prior art, including but not limited to Clostridium aceticum (Wieringa, K. T. (1936), J. Microbiol. Serol. 3, 263-273), Acetobacterium woodi (Balch, 5 W. E., Schobert, S., Tanner, R. S., and Wolfe, R. S. (1977), Int. J. Sys. Bacteriol. 27, 335-361), Clostridium thermaceticum (Fontaine, F. E, Peterson, W. H., McCoy, E. and Johnson, M. J. (1942), J. Bact. 43, 701-715), Clostridium lungdahlii (WO0068407), Clostridium autoethanogenum (Aribini et al., Archives of Microbiology 161, 345-351), Moore//a sp. HUC22-1 (Sakai et al., Biotechnology Letters 29, 1697-1612) and those of the genus Carboxydothermus 10 (Svetlichny et al. (1991), Systematic and Applied Microbiology 14, 254-260). These and other acetogenic bacterial cells are commercially available, for example from the American Tissue and Culture Collection (ATTC), USA, or from the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany. Within the scope of the present invention is also a mixed culture comprising at least two acetogenic bacterial cells. 15 In a preferred embodiment, the term "C4 body", as used herein, refers to any organic compound comprising a total of four carbon atoms, in any combination with functional groups comprising atoms other than carbon. In a more preferred embodiment, the term "C4 body", as used hierein, refers to any derivate made from butanol or butyrate. In a most preferred embodiment, said 20 derivative is obtained by a derivatization that involves any reaction other than those involving a net addition or removal" of carbon atoms to butanol or butyrate or derivatives thereof, including, but not limited to oxidation, in particular hydroxylation, reduction, and methyl shifts, wherein the feature "net addition or removal of carbon atoms" does not exclude a temporary addition or removal of carbon atoms, for example tethering the C4 body or derivative temporarily to an 25 enzyme or a cofactor thereof. Examples of C4 bodies comprise 1-butanol (referred to in this application as "butanol"), 2-butanol, butyrate, 1,4-butanediol, 2,3-butanediol, amino butane, thiobutanol, isobutenol and isobutanol. The present invention contemplates both the use of wild type acetogenic bacterial cells and 30 genetically modified acetogenic bacterial cells. In a preferred embodiment, a genetically modified acetogenic bacterial cell is an acetogenic bacterial cell that has been modified such that the activity of at least one enzyme involved in the Wood-Ljungdahl pathway, i.e. the WO 2013/124401 PCT/EP2013/053523 7 pathway converting carbon monoxide, carbon dioxide and hydrogen to acetate. In a preferred embodiment, the term "enzyme involved in the Wood-Ljungdahl pathway", as used herein, comprises any enzyme that binds to or, preferably accepts as a substrate, one of the substrates of said pathways, preferably carbon monoxide, carbon dioxide or hydrogen, or any of the 5 intermediates formed within the pathway starting from any of these substrates as the substrates are converted to acetate or derivatives thereof. In another preferred embodiment, the term "enzyme involved in the Wood-Ljungdahl pathway", as used herein, refers to an enzyme from the group comprising CO dehydrogenase and acetyl-CoA synthetase (Diekert and Wohlfahrt, (1994) Antonie van Leeuwenhoek 66 (1-3), 209-221). Techniques that may be used to 10 genetically modify bacterial cells are described in the prior art, for example in Sambrook et al. (Molecular Cloning - A Laboratory Manual (1989) Cold Spring Harbor Laboratory Press), as are methods for increasing the activity of an enzyme in a bacterial cell, for example by increasing expression of the gene encoding the enzyme having the activity of interest by way of chromosomal gene amplification (WO 03/014330 and WO 03/040373). In a preferred 15 embodiment, the acetogenic bacterial cell is chosen from the group comprising Clostridium carboxidivorans, Clostridium drakei und Clostridium Ijungdahlii. It is essential that the process is carried out under anaerobic conditions. In a preferred embodiment, the term "anaerobic conditions", as used herein, means that the saturation of 20 oxygen in a solution of interest is, in order of increasing preference, less than 30, 20, 10, 5, 2.5 or 1 percent saturation, wherein 100 % saturation represents the concentration of oxygen present if the solution is sparged extensively with pure oxygen gas under comparable conditions, for example at 20 'C under atmospheric pressure. With regard to a gas, the term "anaerobic conditions", as used herein, means, in a preferred embodiment, that the gas 25 comprises, in order of increased preference and with reference to the total volume, less than 30, 20, 10, 5, 2.5, 1, 0.5, 0.1, 0.01 % oxygen. In another preferred embodiment, the term "anaerobic conditions", as used herein, means that the concentration of oxygen, either in a gas mixture or a solution, is such that it does not inhibit the growth of anaerobic acetogenic bacteria, preferably Clostridium carboxidivorans. The person skilled in the art is familiar with techniques that may be 30 used to turn reaction vessels and solutions anaerobic, for example flushing gas tight vessel and solutions with nitrogen, argon or the like, or complementing aqueous solutions with enzymatic systems consuming oxygen, for example 0.6% (w/v) P-D-glucose, 0.5 units ml- 1 glucose WO 2013/124401 PCT/EP2013/053523 8 oxidase (Sigma) and 200 units ml- 1 catalase (Sigma) as described by Richter, C. D. et al. (2002), J. Biol. Chem. 277 (5), 3094-3100. Syngas is the main carbon source for the inventive production of C4 bodies, preferably butanol 5 and/or butyric acid. In a preferred embodiment, the term "syngas", as used herein, refers to a mixture comprising at least one of water and hydrogen (H 2 ) and at least one of carbon monoxide (CO) and carbon dioxide (C02), wherein the total combined volume of water, hydrogen, carbon monoxide and carbon dioxide is at least 80, preferably 90 percent of the total volume of the mixture. Further components comprise nitrogen, noble gases and the like. In a 10 preferred embodiment, the syngas comprises 40 to 95 % carbon monoxide. In a preferred embodiment, the syngas comprises 40 to 100, preferably 40 to 95 % carbon dioxide and 0.5 to 20 % H 2 . In another preferred embodiment, the syngas comprises less than 10 % carbon dioxide. In another preferred embodiment, the syngas comprises less then 10 % carbon monoxide. In another preferred embodiment the syngas comprises at least 5, preferably 10 % 15 carbon monoxide. In another preferred embodiment, the total combined volume of hydrogen and carbon dioxide is, in order of increasing preference, more than 50, 60, 70, 80, 90, 95 or 99 percent of the total volume of the mixture. In a preferred embodiment, the term "contacting" a microorganism with "syngas" of any composition specified in this application, as used herein means that the microorganism is present in an atmosphere consisting of syngas of the specified 20 composition. According to the inventive method, the acetogenic bacterial cell is contacted with syngas in the absence of oxygen in an aqueous medium. In a preferred embodiment, the term "aqueous medium" comprises any aqueous solution that comprises the amount of salts and buffers 25 necessary to grow or sustain an acetogenic bacterial cell and to sustain acetogenesis. For example, an aqueous medium according to Hurst, K. M., and Lewis, R. (2010), Biochemical Engineering Journal 2010, 48, 159-165 may be used to carry out the inventive teachings. In a preferred embodiment, the aqueous medium comprises yeast extract. 30 A crucial aspect of the present invention is that ethanol (CH 3
-CH
2 -OH) and/or acetate (CH 3 COO-) are present in the aqueous medium from the onset of the reaction at a total combined concentration, i.e. the sum of the concentration of the acetate cation and the concentration of WO 2013/124401 PCT/EP2013/053523 9 ethanol, is at least 0.1 g L-1. In other preferred embodiments, the concentration of ethanol and/or ethanol is 0.1 to 50, 0.2 to 40, 0.25 to 20 or 0.5 to 20 g L-1. Rather than waiting for the cell to produce endogenous acetate, exogenously produced acetate 5 and/or ethanol is present initially in step a) in the aqueous medium. In a preferred embodiment, the term "exogenously produced" acetate and/or ethanol, as used herein, refers to acetate of ethanol produced or purified in a separate reaction vessel prior to contacting the acetogenic bacterial cell, by contrast to acetate and/or ethanol produced in step b), i.e. following step a). In a preferred embodiment, the term "exogenously produced" acetate and/or ethanol comprises 10 acetate and/or ethanol produced by a acetogenic bacterial cell or in fact the same acetogenic bacterial cell as the one used in step a), but removed from the reaction vessel, separated from any C4 body produced and recycled. In a preferred embodiment, the concentration of exogenously produced acetate and/or ethanol is maintained in the aqueous medium at the value or range of values present initially as long as the reaction catalysed by the acetogenic 15 bacterial cell in step b) continues. In a preferred embodiment, the acetate and/or ethanol in the aqueous medium as whole is regarded as exogenous as long as more than 80, preferably more than 90 % of the total acetate and/or ethanol present in the aqueous medium is accounted for by exogenous produced acetate and/or ethanol. 20 The mixture obtained in step a) may be incubated for at least 0.5, 1, 2, 3, 5, 10, 12 , 16, 24, 36, 48, 120 or 160 hours. In a preferred embodiment, a reducing agent is present in step b). The person skilled in the art is familiar with reducing agents, for example thiol-containing agents such as cysteine or dithionite. The initial concentration may be at least 0.1, 0.5, 1, 2, 5 or 10 mM. 25 It is preferred that the method comprises recycling ethanol and/or acetate from the mixture following step b). In a preferred embodiment, this means that some of the reaction mixture from step b) is removed and the acetate and/or ethanol therein is separated from any C4 body formed, followed by transferring the acetate and/or ethanol obtained in this manner back to the 30 reaction mixture. Some of the reaction mixture may be removed in step b) in a batch-wise mode or, preferably, in a continuous mode. In the latter case, the reaction mixture removed continuously may be collected prior to the separation step.
WO 2013/124401 PCT/EP2013/053523 10 The person skilled in the art is familiar with methods that may be used to separate acetate and/or ethanol from any butanol and/or butyric acid present in an aqueous solution, for example extraction using a hydrophobic organic solvent, distillation or the like. 5 Any organic compound referred to in this application, for example C4 bodies, acetate, ethanol, butyrate and butanol, comprises both protonated forms of the compound of interest as well as the various salts of the compound. For example, acetate may comprises both as acetic acid
(CH
3 -COOH), but also the various salts of acetic acid, for example sodium acetate (CH 3
-COO
10 Na'), potassium acetate (CH 3 -COO-K*), ammonium acetate (CH 3
-COO-NH
4 *) or the like. In a preferred embodiment of the present invention, the invention is carried out in a continuous mode, wherein aqueous solutions from the vessel used to carry out steps a) and b) is continuously removed, separated into a fraction enriched in C4 bodies, preferably butanol 15 and/or butyric acid, and another fraction enriched in acetate and/or ethanol, and the latter fraction is added to the vessel used to carry out steps a) and b). The temperature in steps a) and b) needs to be chosen bearing in mind the needs of the acetogenic bacterial cell on the one hand and thermodynamic parameters on the other hand. 20 The state of the art teaches ranges of temperatures as well as optimum temperatures for a vast range of acetogenic bacteria. For example, Clostridium thermoaceticum may be incubated at temperatures of up to 60 'C (Fontaine et al., 1942). See also standard textbooks of microbiology for temperatures that may be used to grow acetogenic bacterial and archaeal cells, for example Dworkin et al. (2006) The Prokaryotes - A Handbook on the Biology of 25 Bacteria, Volume 2. In a preferred embodiment, the temperature applied in step b) is 0 to 100 0C, 10 to 80 'C, 20 to 60 'C and 30 to 45 'C. The pressure of the syngas applied is, in a preferred embodiment, 0.5 to 10 bars, more preferably 0.8 to 8, even more preferably 1.5 to 6 bar. In another preferred embodiment, the pressure is more than 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10 bar. In a preferred embodiment, the pressure applied exceeds atmospheric pressure. In a 30 preferred embodiment, the unit ,,gauge pressure", as referred to herein, refers to the pressure relative to the local atmospheric or ambient pressure. For example, if the local atmospheric WO 2013/124401 PCT/EP2013/053523 11 pressure is 1 bar and the pressure inside a vessel is 1.8 bar, then the gauge pressure is 0.8 bar (gauge pressure). It is a particular strength of the present invention that the formation of C4 bodies, preferably 5 butanol and/or butyric acid, does not depend on the presence of significant amounts of organic compounds comprising carbon chains of more than two carbon atoms. In a preferred embodiment, steps a) and b) may be, but do not have to be, carried out in the absence of carbohydrates. In a preferred embodiment, the term "in the absence of carbohydrates" means that the concentration of carbohydrates is, in order of increasing preference, less than 5, 1, 0.5, 10 0.1 or 0.05 % (weight per volume). In a preferred embodiment, the term "carbohydrates" comprises any organic compound having at least two functional groups selected from the group comprising hydroxyl, aldehyde or keto groups and comprises a straight carbon chain of five or more carbon atoms. Exemplary carbohydrates comprise hexoses such as glucose or fructose, pentoses such as ribulose and complex sugars comprising two or more carbohydrate 15 monomers, for example sucrose. Likewise, it is preferred that the syngas, in order of increasing preference, provides more than 70, 75, 80, 85, 90 or 95 % of the carbon present initially in step a). In a preferred embodiment, the term "syngas provides more than X % of the carbon present initially in step a)", as used 20 herein, means that more than X % of the carbon atoms present in the reaction vessel are carbon atoms in carbon monoxide or carbon dioxide molecules. For example, syngas provides more than 90 % of the carbon present if 9 moles of carbon dioxide, less than 1 mole methane and some hydrogen is present, but no other compounds comprising at least one carbon atom. 25 The process may be carried out in a batch-wise mode. If this is the case, the term "incubating the mixture ... for at least X minutes" means, as used herein, in a preferred embodiment, that a batch of acetogenic bacterial cells in kept for X minutes under the conditions specified, for example in the presence of aqueous medium, the presence of syngas in contact with the acetogenic bacterial cell, the temperature set, the presence of ethanol and/or acetate and so 30 on. Alternatively, the process may be carried out in a continuous mode. If this is the case, the term "incubating the mixture ... for at least X minutes", means, as used herein, in a preferred embodiment, that the average time spent by a molecule of reactant, for example of hydrogen, in WO 2013/124401 PCT/EP2013/053523 12 the vessel or the conditions specified is X minutes. For example, if a gas tight vessel comprises 10 litres of hydrogen, hydrogen is added at a flow rate of 1 litre per minute and the construction of the vessel is such that the hydrogen molecules may be assumed to leave the vessel in order of entrance, then the average time spent, in other words the time the hydrogen molecule 5 spends incubated under the conditions set in the vessel, is 10 minutes. If a large scale process is envisioned, it may be advantageous to carry out the inventive teachings in a continuous mode. In a preferred embodiment, the term "continuous mode", as used herein, refers to a method which comprises continuous substrate feed in the bioreactor 10 and removal of medium comprising products from the bioreactor. The continuous mode may, in addition comprise a constant feed of nutrients. The cells in the bioreactor may grow, alternatively, nutrients may be limited to the effect that cells reach a stationary phase, i.e. growth is limited by the lack of nutrients, but cells remain metabolically active and keep converting substrates such as syngas. In a preferred embodiment, the term "stationary phase", 15 as used herein, means that the cells undergoing such a phase are metabolically active by essentially do not multiply. The invention may be carried out using any kind of vessel that allows for maintenance of anaerobic conditions. If carried out at a small scale, a gas tight glove providing a low-oxygen, or 20 oxygen-free environment may be used. At a large scale, a high volume syngas fermenter appears more practical. In a preferred embodiment, the reaction mixture is subjected to constant stirring to ascertain that cells, nutrients, substrates and products are distributed uniformly throughout the aqueous medium. 25 State of the art analytical tools allow for the constant monitoring of numerous compounds in a bioreactor, for example by taking samples from the reaction mixture regularly and subjecting them to HPLC analysis. Key parameters such as pH and the concentration of substrates and products may be adjusted online if there is need. In a preferred embodiment, the concentration of at least one of ethanol and butanol under constant surveillance and the levels are adjusted to 30 concentrations compatible with growth and catalytic activity of the acetogenic bacterial cell used.
WO 2013/124401 PCT/EP2013/053523 13 The invention is further illustrated by the following figures and non-limiting examples from which further features, embodiments, aspects and advantages of the present invention may be taken. 5 Fig. 1 shows the difference between product concentrations at the beginning and at the end of the cultivation with respect to the carbon content as obtained in Example 1. The unit "mmolC/l" refers to the amount of carbon in mmol per liter. Fig. 2 shows the difference between product concentrations at the beginning and at the end of 10 the cultivation with respect to the carbon content as obtained in Example 2. The unit "mmolC/l" refers to the amount of carbon in mmol per liter. Fig. 3 shows the amounts of product at the beginning and at the end of the cultivation with respect to the carbon content as obtained in Example 3 using strain Clostridium drake. 15 Fig. 4 shows the difference between product concentrations at the beginning and at the end of the cultivation with respect to the carbon content as obtained in Example 3 using strain Clostridium jungdahlii.
WO 2013/124401 PCT/EP2013/053523 14 Example 1: Production of butyric acid in the absence or presence of ethanol A Clostridium carboxidivorans DSMZ 15243 preculture was grown in anaerobic 1 L bottles sealed using a butylseptum, comprising 200 mL of modified PETC according to Hurst, K. M., 5 and Lewis, R. (2010), Biochemical Engineering Journal 2010, 48, 159-165, consisting of 1 g yeast extract, 19 g MES, 30 mL mineral salt solution, 10 mL of trace element solution and 10 mL of vitamin solution. The mineral salt solution comprises 80 g NaCl, 100 g ammonium chloride, 10 g potassium chloride, 10 g potassium monophosphate, 20 g magnesium sulfate and 4 g calcium chloride per liter. The vitamin solution consists of 0.01 g pyridoxin, 0.005 g 10 thiamin, 0.005 g riboflavin, 0.005 g calcium pantothenate, 0.005 g thioctacid, 0.005 g p aminobenzoic acid, 0.005 g nicotinic acid, 0.005 vitamin B12, 0.002 g folic acid and 0.01 g MESNA per liter. The trace element solution consists of 2 g nitriloacetic acid, 1 g MnSO 4 , 0.8 g iron ammonium sulfate, 0.2 g cobalt chloride, 0.2 g zinc sulfate, 0.02 g copper(II) chloride, 0.02 g nickel chloride, 0.02 g sodium molybdate, 0.02 g Na 2 SeO 4 , 0.02 Na 2
WO
4 per liter. The pH was 15 adjusted to 5.9. Prior to inoculation the medium was boiled for 20 minutes and subsequently flushed with pure nitrogen for 20 minutes. Subsequently it was autoclaved at 121 'C for 20 minutes, followed by cooling down, then it was filled using process gas comprising 50% CO, 45% H 2 and 5% C02 at 20 1 bar gauge pressure. Subsequently, the pressure was adjusted to 0.8 bar gauge pressure. Also, prior to inoculation, 1.5 mL of a solution comprising 4 % each of sodium sulfate and cystein hydrochloride as reducing agent was added under sterile anaerobic conditions. 25 The culture was grown at 37'C and 100 rpm. The culture was transferred to fresh medium every 72 hours. For the experiments the medium was prepared in the same way using process gas comprising 95 % CO and 5 % C02. In addition, 0.6 g per liter ethanol was added to half the flasks under 30 sterile anaerobic conditions.
WO 2013/124401 PCT/EP2013/053523 15 The solutions were inoculated under sterile anaerobic conditions using 10 vol.% of inoculum from a 48 hour culture. The flasks were shaken at 37 'C at 100 rpm for 160 hours. The dry biomass and the product concentration were determined at the beginning and at the end of the experiment. 5 The concentrations of acetic acid, ethanol, butyric acid and butanol were determined using HPLC. A aminex HPX-87H column was used as a stationary phase. 5 mM sulfuric acid was used as an eluent at a constant flow rate of 0.6 mL/min. The temperature of the column was 40 'C. Ethanol and butanol were detected using a refractive index detector. A diode array detector 10 was used at a wave length of 210 nm to detect acetic acid and butyric acid. The concentrations of the compounds were calculated by integration of the peak using calibration graphs of the respective compound at defined concentrations. Fig. 1 shows the difference between product concentrations at the beginning and at the end of 15 the cultivation with respect to the carbon content. In the presence of ethanol 105 nmolC/I acetic acid were formed compared to 97.17 mmolC/L formed in the absence of ethanol. 22.06 mmolC/L of butyric acid were formed in the presence of ethanol compared to 13.57 mmolC/L in the absence of ethanol, when equal amounts of dry 20 biomass, more specifically 480 mg/L, were used. In summary, addition of ethanol leads to a significant increase in the amount of butyric acid formed. 25 Example 2: Production of butyric acid in the absence or presence of acetate The experimental protocol followed was as described in example 1, except for the fact that 2 g/L acetic acid was added to half the flask instead of 0.6 g/L ethanol and that the batch of syngas used comprised 50 % carbon monoxide and 50 % hydrogen. 30 WO 2013/124401 PCT/EP2013/053523 16 Fig. 2 shows the difference between product concentrations at the beginning and at the end of the cultivation with respect to the carbon content. In the presence of acetate 42,13 nmolC/I butyric acid was formed compared to 26,43 mmolC/L formed in the absence of acetate. 5 In summary addition of acetate also leads to an increase in the amount of butyric acid formed. Example 3: Production of butyric acid in the presence of acetic or ethanol using alternative strains and gas mixtures 10 Media and solutions used: ATCC 1754 modified (PETC minimal medium) Substance Amount MES 10.00 g/I Solution Amount trace elements 10 mI/ vitamins 141 10 mI/ Solution Amount fructose 250 g/L 20 mI/ reducing agent ATCC 10 mI/ The substance was mixed with vitamins and trace elements and the volume adjusted pH value 15 and NaOH solution using deminerialized water (VE water). Subsequently the pH value was adjusted to 6.0 using NaOH solution, the medium was boiled and transferred to pressure resistant 1 1 glass bottles. Subsequently, the medium was cooled on ice and sparged using N 2 in order to remove any remaining oxygen. 20 Subsequently, the medium was autoclaved. Then the reducing agent was added to the medium and the volume was adjusted using anaerobic VE water. The reducing agent was sterilized separately and stored under anaerobic conditions.
WO 2013/124401 PCT/EP2013/053523 17 ATCC 1754 modified (PETC) Substance Amount
NH
4 CI 1.00 g/l KCI 0.10 g/l MgSO 4 x 7 H 2 0 0.20 g/l NaCl 0.80 g/l
KH
2
PO
4 0.10 g/l CaC12 x 2 H 2 0 20.00 mg/I resazurine 1.00 mg/I yeast extract 1.00 g/l MES 20.00 g/l Solution Amount trace elements ATCC 1754 10 mI/ vitamins 141 10 mI/ Solution Amount fructose 250 g/L 20 mI/ reducing agent ATCC 10 mI/ The substance, vitamins and trace elements were mixed and the volume adjusted pH value and 5 NaOH solution using deminerialized water (VE water). Subsequently, the pH value was adjusted to 6.0 using NaOH solution, the medium was boiled and transferred to pressure resistant 1 1 glass bottles. Subsequently the medium was cooled on ice and sparged using N 2 in order to remove any remaining oxygen. 10 Subsequently, the medium was autoclaved. Then the reducing agent was added to the medium and the volume was adjusted using anaerobic VE water. The reducing agent was sterilized separately and stored under anaerobic conditions.
WO 2013/124401 PCT/EP2013/053523 18 ATCC 1754 modified (PETC modified) Substance Amount yeast extract 1.00 g/l MES 10.00 g/l Solution Amount trace elements ATCC 1754 10 mI/ vitamins PETC mod 10 mI/ mineral solution PETC mod 30 mI/ Solution Amount reducing agent ATCC 7.5 mI/ The substance, vitamins and trace elements were mixed and the volume adjusted pH value and NaOH solution using deminerialized water (VE water). Subsequently, the pH value was 5 adjusted to 6.0 using NaOH solution, the medium was boiled and transferred to pressure resistant 1 1 glass bottles. Subsequently the medium was cooled on ice and sparged using N 2 in order to remove any remaining oxygen. Subsequently, the medium was autoclaved. Then the reducing agent was added to the medium 10 and the volume was adjusted using anaerobic VE water. The reducing agent was sterilized separately and stored under anaerobic conditions.
WO 2013/124401 PCT/EP2013/053523 19 trace elements ATCC 1754 Substance Amount nitrilotriacetic acid 2 g/l MnSO 4 x H 2 0 1 g/l (NH4) 2 Fe(SO4) 2 x 6 H 2 0 0.8 g/l CoC12 x 6 H 2 0 0.2 g/l ZnSO 4 x 7 H 2 0 0.2 g/l CuC1 2 x 2 H 2 0 0.02 g/l Na 2 MoO 4 x 2 H 2 0 0.02 g/l NiCl 2 x 6 H 2 0 0.02 g/l Na 2 SeO 4 0.02 g/l Na 2
WO
4 x 2 H 2 0 0.02 g/l First of all, the nitrilotriacetic acid was dissolved in 1 1 demineralized water (VE water), and the pH value was adjusted to 6.0 using a KOH solution. Subsequently, all the other chemicals were 5 added. The trace element solution was stored at 4 'C in the dark. Vitamins 141 Substance Amount biotin 2 mg/I folic acid 2 mg/I pyridoxine-HCI 10 mg/I thiamine-HCI x H 2 0 5 mg/I riboflavine 5 mg/I nicotinic acid 5 mg/I D-Ca-pantothenate 5 mg/I vitamin B12 0.1 mg/I p-amino benzoic acid 5 mg/I liponic acid 5 mg/I The substances were solved in 1 1 demineralized water (VE water) and frozen at -20 'C in 10 sterile falcon tubes in 10 ml portions until use.
WO 2013/124401 PCT/EP2013/053523 20 Mineral solution PETC mod Substance Amount NaCl 80 g/l
NH
4 CI 100 g/l KCI 10 g/l
KH
2
PO
4 10 g/l MgSO 4 x 7 H 2 0 20 g/l CaCl 2 x 2 H 2 0 4 g/l The substances were dissolved in 1 1 demineralized water (VE water). The mineral solution was 5 stored at 4 'C in the dark. Reducing agent ATCC 1754 Substance Amount NaOH 9 g/l L-Cysteine x HCI 40 g/l Na 2 S x 9 H 2 0 40 g/l First of all NaOH was dissolved in 1 1 demineralized water (VE water) and boiled. Subsequently 10 the solution was transferred to a pressure-resistant 1 1 glass bottle and spaged using N 2 while cooling down on ice. The other substances were added while the solution cooled down. Subsequently, the reducing agent was autoclaved for 20 minutes. Strains used: 15 COX-Cdr-001 (Clostridium drake) COX-Clj-001 (Clostridium jungdahlii) Pre-cultures: The strains used were transferred to pre-cultures using working cryocultures prepared 20 immediately (prior to cultures using 4 ml culture in the exponential phase and 1 ml 50 % glycerol solution for conservation, storage at -80 'C). The pre-cultures each consisted of 5 ml ATCC WO 2013/124401 PCT/EP2013/053523 21 1754 mod (PETC)-medium and a fixed inoculum of the strains. The ideal inoculum density was determined in pilot experiments for the respective strain. COX-Cdr-001: 0.1 % in 5 ml medium COX-Clj-001: 10 % in 5 ml medium 5 Cultures: 50 ml each of any medium used was transferred into sterile anaerobic (oxygen-free) pressure resistant 250 ml glass bottles and inoculated using 10 % (5 ml) of the strains used taken from the freshly prepared 3 days old pre-cultures. 10 The culture flasks were closed using a sterile butyl bung and a red lid (comprising three drilled wholes). Hollow needles (company Sterican, 0 0.90 x 40 mm) were pierced through all three wholes. A manometer for controlling pressure was attached to one of the hollow needles (ideally the one in the middle). Valves were attached to the other hollow needles, so gas added and gas 15 removed from the culture flask could be controlled independent from each other. Each of the strains used were cultivated in duplicate for direct reproducible results. Preparation of cultures: 20 Prior to starting the actual cultivations the bottles were each sparged using syngas thrice. This was done by attaching to one of the valves a tube for pumping gas into the bottle and to the other valve a tube for releasing the gas removed under the hood in line with regulations. By opening the valve with the tube for adding gas syngas was pumped into the culture flask 25 until the needle of the manometer displayed a pressure value of 0.8 bar. Subsequently the valve for adding gas was closed and the valve for removing gas was opened until the needle displayed a pressure value of 0 bar. This procedure was repeated thrice for each culture flask. When the procedure was repeated for the fourth time the pressure in the bottle was maintained, i. e. the cultures were over laid with syngas. 30 The culture samples were then ready for cultivation at 35 'C and 100 rpm in a rocking water bath.
WO 2013/124401 PCT/EP2013/053523 22 Taking samples: One or twice per day approximately 1 ml of culture was removed for determining the optical density at 600 nm (recording the growth of a culture). 5 Initially and at the end of the experiments two samples of 1.5 ml each were transferred to 2 ml Eppendorf-tubes and used for NIMR-analysis. Addition of gas: 10 In regular intervals (several times a day) the pressure inside the culture flask was checked in order to ensure that it was constant. The growth of the cultures and their metabolism consumed varying amounts of syngas. In case the pressure decreased further gas was added as described above. The same procedure was carried out if gas was removed from the culture flask before taking a sample. 15 End of the experiment: The experiment was terminated after approximately one week by sparging continuously for 10 minutes nitrogen through every culture flask before removing the hollow needles for increased safety. The cultures were transferred to sterile 50 ml falcon tubes under a sterile hood and spun 20 down for 30 minutes at 4500 g. There was no need to work under anaerobic conditions any more. The cell pellets recovered were discarded and the supernatants of the cultures were transferred to sterile 50 ml syringes under the sterile hood. They were transferred to a new sterile 50 ml falcon tube via a 0.2 pm sterile filter and frozen at -20 'C as back up samples. 25 Experiment 1: Cultivation using yeast extract and 0.6 g/I ethanol (BF-DM-12-COX-038) The experiments were carried out using modified ATCC 1754 (PETC)-medium comprising 1 g/I yeast extract. In addition 0.6 g/I ethanol were used as a carbon source. The gas mixture used comprised 30 % C02 and 70 % H 2 . 30 Experiment 2: Cultivation using yeast extract and 2 g/I acetic acid (BF-DM-12-COX-041) The experiment was carried out as described in experiment 1 except that acetic acid was added to the medium rather than ethanol.
WO 2013/124401 PCT/EP2013/053523 23 Experiment 3: Cultivation using yeast extract (BF-DM-12-COX-042) (comparative experiment) For direct comparison the same medium was used but without addition of ethanol or acetic acid. 5 The results are depicted in Figs. 3 and 4. In summary, the effect shown in Example 1 could be reproduced using alternative gas mixtures and other strains of acetogenic bacteria.
权利要求:
Claims (17)
[1] 1. A method for producing C4 bodies, preferably butyric acid and/or butanol, comprising the 5 steps: a) contacting an acetogenic bacterial cell in an aqueous medium with syngas under anaerobic conditions and preferably in the absence of carbohydrates, 10 b) incubating the mixture obtained in step a) at a temperature between 0 and 100 'C for at least 30 minutes, wherein the aqueous medium comprises, in step b), ethanol and/or acetate at a total combined concentration of at least 0.1 g L-1. 15
[2] 2. The method according to claim 1, wherein the ethanol and/or acetate is exogenously produced ethanol and/or acetate.
[3] 3. The method according to any of claims 1 to 2, wherein the total combined concentration of 20 ethanol and/or acetate is 0.5 g to 20 g L-1.
[4] 4. The method according to any of claims 1 to 3, wherein the syngas comprises 40 to 100, preferably 40 to 95 % CO. 25
[5] 5. The method according to any of claims 1 to 4, wherein the syngas comprises less than 10 % C02.
[6] 6. The method according to any of claim 1 to 4, wherein the syngas comprises less than 10 % CO. 30 WO 2013/124401 PCT/EP2013/053523 25
[7] 7. The method according to any of claims 1 to 6, wherein the method comprises the step c) separating and, optionally, recycling ethanol and/or acetate from the mixture following step b). 5
[8] 8. The method according to any of claims 1 to 7, wherein the acetogenic bacterial cell is selected from the group comprising Clostridium, Moorella and Carboxythermus and is preferably Clostridium carboxidivorans. 10
[9] 9. The method according to any of claims 1 to 8, wherein the pH in steps a) and b) is maintained between 3 and 7, preferably 4 to 6, more preferably 5 to 5.5.
[10] 10. The method according to any of claims 1 to 9, wherein step b) is carried out at a temperature between 15 'C and 45 'C, preferably 30 'C to 40 'C. 15
[11] 11. The method according to any of claims 1 to 10, wherein the syngas provides more than 80, preferably more than 90 % of the carbon present initially in step a).
[12] 12. The method according to any of claims 1 to 11, wherein the process is run in a continuous 20 mode.
[13] 13. The method according to any of claims 1 to 12, wherein step b) is carried out in the absence of carbohydrates. 25
[14] 14. A use of ethanol and/or acetate for increasing the proportion of syngas converted by an acetogenic bacterial cell in an aqueous medium under anaerobic conditions to C4 bodies, preferably butyric acid and/or butanol.
[15] 15. The use according to claim 14, wherein the ethanol and/or acetate is exogenously produced 30 ethanol and/or acetate and is preferably added to the aqueous medium prior to the accumulation of detectable quantities of ethanol and/or acetate produced endogenously by said cell. WO 2013/124401 PCT/EP2013/053523 26
[16] 16. The use according to any of claims 14 to 15, wherein acetate and/or ethanol is present in an aqueous medium comprising the acetogenic bacterial cell at a total combined concentration of 0.5 to 5 g L-1. 5
[17] 17. The use according to any of claims 14 to 16, wherein the acetogenic bacterial cell is selected from the group comprising Clostridium, Moorella and Carboxythermus and is preferably Clostridium carboxidivorans.
类似技术:
公开号 | 公开日 | 专利标题
US9765366B2|2017-09-19|Biotechnological method for producing butanol and butyric acid
Heiskanen et al.2007|The effect of syngas composition on the growth and product formation of Butyribacterium methylotrophicum
US8293509B2|2012-10-23|Alcohol production process
US8900836B2|2014-12-02|Acid production by fermentation
Sim et al.2007|Clostridium aceticum—a potential organism in catalyzing carbon monoxide to acetic acid: application of response surface methodology
AU2009223801B2|2014-09-25|Method for sustaining microorganism culture in syngas fermentation process in decreased concentration or absence of various substrates
US8354269B2|2013-01-15|Optimised media containing nickel for fermentation of carbonmonoxide
Stepanov et al.2017|Immobilised cells of Pachysolen tannophilus yeast for ethanol production from crude glycerol
WO2009022925A1|2009-02-19|Processes of producing alcohols
CA2703622A1|2009-05-22|Clostridium autoethanogenum strain and methods of use thereof to produce ethanol and acetate
AU2009258344A1|2009-12-17|Production of butanediol by anaerobic microbial fermentation
Sinha et al.2014|Biohydrogen production from various feedstocks by Bacillus firmus NMBL-03
KR20100119877A|2010-11-11|Isolated alcohol dehydrogenase enzymes and uses thereof
Sim et al.2008|Biocatalytic conversion of CO to acetic acid by Clostridium aceticum—Medium optimization using response surface methodology |
Chang et al.1998|CO fermentation of Eubacterium limosum KIST612
Hassan et al.2015|Feasibility of installing and maintaining anaerobiosis using Escherichia coli HD701 as a facultative anaerobe for hydrogen production by Clostridium acetobutylicum ATCC 824 from various carbohydrates
TWI504743B|2015-10-21|Method for enhancing carbon biofixation
EP2861746B1|2019-05-01|A process for culturing microorganisms on a selected substrate
Wakamatsu et al.2013|Ethanol production from d-lactic acid by lactic acid-assimilating Saccharomyces cerevisiae NAM34-4C
Vandecasteele2016|Experimental and modelling study of pure-culture syngas fermentation for biofuels production
CA2914716A1|2015-01-29|A process and medium for reducing selenium levels in biomass from fermentation of co-containing gaseous substrates
Terrill et al.2012|Effect of energetic gas composition on hydrogenase activity and ethanol production in syngas fermentation by Clostridium ragsdalei
NZ583586A|2012-07-27|Processes of producing alcohols by microbial fermentation of carbon monoxide
同族专利:
公开号 | 公开日
CN104302778A|2015-01-21|
ES2565161T3|2016-03-31|
RU2620982C2|2017-05-30|
BR112014020636A2|2017-07-04|
EP2817411A1|2014-12-31|
WO2013124401A1|2013-08-29|
CA2864443A1|2013-08-29|
MX2014010045A|2014-10-13|
EP2631298A1|2013-08-28|
US9765366B2|2017-09-19|
US20150284747A1|2015-10-08|
EP2817411B1|2016-01-06|
RU2014137950A|2016-04-20|
JP2015508659A|2015-03-23|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
US4560658A|1983-12-05|1985-12-24|Cpc International Inc.|Production of butanol by fermentation in the presence of carbon monoxide|
US5192673A|1990-04-30|1993-03-09|Michigan Biotechnology Institute|Mutant strain of C. acetobutylicum and process for making butanol|
EP1177309B1|1999-05-07|2004-02-18|Emmaus Foundation, Inc.|Clostridium strains which produce ethanol from substrate-containing gases|
DE10054347A1|2000-11-02|2002-05-08|Degussa|Process for the catalytic hydrogenation of organic compounds and supported catalysts therefor|
AT409752T|2001-08-06|2008-10-15|Evonik Degussa Gmbh|CORYNEFORME BACTERIA MAKING CHEMICAL SUBSTANCES II|
WO2003040373A2|2001-08-06|2003-05-15|Degussa Ag|Production of l-lysine by genetically modified corynebacterium glutamicum strains|
DE10142621A1|2001-08-31|2003-03-20|Degussa|Processing of the ammoximation products of ketones by liquid-liquid extraction in a ternary solvent system|
DE10142620A1|2001-08-31|2003-03-20|Degussa|Ammoximation of ketones and processing by pervaporation / vapor permeation|
EP1350788A3|2002-03-28|2003-11-12|Degussa AG|Process for preparing hexamethylenediamine from butadiene|
ES2322033T3|2002-05-31|2009-06-16|Evonik Degussa Gmbh|SUPPORTED RUTENIUM CATALYST AND PROCEDURE FOR HYDROGENATION OF AN AROMATIC AMINA IN THE PRESENCE OF THIS CATALYST.|
DE10231119A1|2002-07-10|2004-02-05|Degussa Ag|Process for increasing the selectivity of the hydrogenation of 4,4'-diaminodiphenylmethane to 4,4'-diaminodicyclohexylmethane in the presence of an N-alkyl-4,4'-diaminodiphenylmethane|
DE10247495A1|2002-10-11|2004-04-22|Degussa Ag|Process for the epoxidation of cyclic alkenes|
EP1424332A1|2002-11-26|2004-06-02|Degussa AG|Process for the purification of crude propene oxide|
US6878836B2|2003-06-18|2005-04-12|Degussa Ag|Process for the epoxidation of propene|
ES2301080T3|2004-12-20|2008-06-16|Evonik Degussa Gmbh|METHANOL RECOVERY PROCEDURE.|
DE102006017760A1|2006-03-24|2007-09-27|Ufz-Umweltforschungszentrum Leipzig-Halle Gmbh|Enzymatic preparation of 2-hydroxy-2-methylcarboxylic acid comprises producing 3-hydroxycarboxylic acid in aqueous reaction solution, incubating the obtained solution and converting to 2-hydroxy-2-methylcarboxylic acid|
US8372595B2|2006-05-11|2013-02-12|Evonik Industries Ag|Method for obtaining a microbial strain for production of sphingoid bases|
DE102006025821A1|2006-06-02|2007-12-06|Degussa Gmbh|An enzyme for the production of Mehylmalonatsemialdehyd or Malonatsemialdehyd|
DE102007021199B4|2006-07-17|2016-02-11|Evonik Degussa Gmbh|Compositions of organic polymer as matrix and inorganic particles as filler, process for their preparation and their use and moldings produced therewith|
DE102007005072A1|2007-02-01|2008-08-07|Evonik Degussa Gmbh|Process for the fermentative production of cadaverine|
NZ553984A|2007-03-19|2009-07-31|Lanzatech New Zealand Ltd|Alcohol production process|
DE102007015583A1|2007-03-29|2008-10-02|Albert-Ludwigs-Universität Freiburg|An enzyme for the production of methylmalonyl-coenzyme A or ethylmalonyl-coenzyme A and its use|
DE102007027006A1|2007-06-08|2008-12-11|Evonik Degussa Gmbh|Microbiological production of aldehydes, in particular of 3-hydroxypropionaldehyde|
DE102007031689A1|2007-07-06|2009-01-08|Evonik Goldschmidt Gmbh|enzyme preparations|
DE102007035646A1|2007-07-27|2009-01-29|Evonik Goldschmidt Gmbh|About SIC and via carboxylic acid ester groups linked linear polydimethylsiloxane-polyoxyalkylene block copolymers, a process for their preparation and their use|
DE102007052463A1|2007-11-02|2009-05-07|Evonik Degussa Gmbh|Fermentative recovery of acetone from renewable resources using a new metabolic pathway|
DE102007060705A1|2007-12-17|2009-06-18|Evonik Degussa Gmbh|ω-aminocarboxylic acids or their lactams, producing, recombinant cells|
DE102008004726A1|2008-01-16|2009-07-23|Evonik Goldschmidt Gmbh|Process for the enzymatic production of carboxylic acid esters|
DE102008004725A1|2008-01-16|2009-07-23|Evonik Goldschmidt Gmbh|Process for the heterogeneously catalyzed preparation of carboxylic acid derivatives|
DE102008000266A1|2008-02-11|2009-08-13|Evonik Goldschmidt Gmbh|The invention relates to the use of foam stabilizers, which are produced on the basis of renewable raw materials, for the production of polyurethane foams|
US8329456B2|2008-02-22|2012-12-11|Coskata, Inc.|Syngas conversion system using asymmetric membrane and anaerobic microorganism|
DE102008002090A1|2008-05-30|2009-12-03|Evonik Degussa Gmbh|Unsaturated dicarboxylic acids from unsaturated cyclic hydrocarbons and acrylic acid by metathesis, their use as monomers for polyamides, polyesters, polyurethanes and further conversion to diols and diamines|
DE102008002715A1|2008-06-27|2009-12-31|Evonik Röhm Gmbh|2-hydroxyisobutyric acid producing recombinant cell|
DE102008040193A1|2008-07-04|2010-01-07|Evonik Röhm Gmbh|Process for the preparation of free carboxylic acids|
DE102008040415A1|2008-07-15|2010-01-21|Evonik Röhm Gmbh|Thermal salt splitting of ammonium carboxylates|
DE102008041754A1|2008-09-02|2010-03-04|Evonik Goldschmidt Gmbh|enzyme preparations|
CN102292447A|2008-12-01|2011-12-21|兰扎泰克新西兰有限公司|Optimised fermentation media|
US8039239B2|2008-12-16|2011-10-18|Coskata, Inc.|Recombinant microorganisms having modified production of alcohols and acids|
DE102009000592A1|2009-02-04|2010-08-05|Evonik Degussa Gmbh|Process for the preparation of amino-group-bearing, multicyclic ring systems|
DE102009000662A1|2009-02-06|2010-08-12|Evonik Degussa Gmbh|Process for the preparation of aldehydes and ketones from primary and secondary alcohols|
DE102009000661A1|2009-02-06|2010-08-12|Evonik Degussa Gmbh|Preparing -2,6-dioxabicyclo--octan-4,8-dione, comprises oxidizing dianhydrohexitols or their corresponding hydroxy ketones with oxygen-containing gas in the presence of catalyst composition containing e.g. a nitroxyl radical|
DE102009009580A1|2009-02-19|2010-08-26|Evonik Degussa Gmbh|Process for the preparation of free acids from their salts|
US9034618B2|2009-03-09|2015-05-19|Ineos Bio Sa|Method for sustaining microorganism culture in syngas fermentation process in decreased concentration or absence of various substrates|
DE102009015211A1|2009-03-31|2010-10-14|Evonik Goldschmidt Gmbh|Self-crosslinking polysiloxanes in coatings of enzyme immobilizates|
DE102009002371A1|2009-04-15|2010-10-21|Evonik Goldschmidt Gmbh|Process for the preparation of odorless polyether alcohols by means of DMC catalysts and their use in cosmetic and / or dermatological preparations|
RU2406763C1|2009-04-28|2010-12-20|Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов" |Method for microbiological synthesis of n-butanol|
DE102009002811A1|2009-05-05|2010-11-11|Evonik Degussa Gmbh|Enzymatic process for the preparation of aldehydes|
DE102009027392A1|2009-07-01|2011-01-05|Evonik Degussa Gmbh|Composition based on diisocyanates from renewable raw materials|
DE102009027394A1|2009-07-01|2011-01-05|Evonik Degussa Gmbh|Use of isocyanates based on renewable raw materials|
DE102009046626A1|2009-11-11|2011-05-12|Evonik Degussa Gmbh|Candida tropicalis cells and their use|
DE102009046623A1|2009-11-11|2011-05-12|Evonik Röhm Gmbh|Use of a protein homologous to a MeaB protein to increase the enzymatic activity of a 3-hydroxycarboxylic acid CoA mutase|
DE102010014680A1|2009-11-18|2011-08-18|Evonik Degussa GmbH, 45128|Cells, nucleic acids, enzymes and their use, as well as methods for producing sophorolipids|
DE102009046910A1|2009-11-20|2011-05-26|Evonik Degussa Gmbh|Process for the processing of a material stream containing laurolactam for the recovery of all valuable components contained by combination of crystallization with downstream distillation|
BR122019001300B1|2009-12-23|2020-03-03|Evonik Degussa Gmbh|PROCESS FOR THE PRODUCTION OF SWEETENERS|
DE102010002809A1|2010-03-12|2011-11-17|Evonik Degussa Gmbh|Process for the preparation of linear alpha, omega-dicarboxylic acid diesters|
DE102010015807A1|2010-04-20|2011-10-20|Evonik Degussa Gmbh|Biocatalytic oxidation process with alkL gene product|
DE102010029973A1|2010-06-11|2011-12-15|Evonik Degussa Gmbh|Microbiological production of C4 bodies from sucrose and carbon dioxide|
DE102010026196A1|2010-06-25|2011-12-29|Evonik Degussa Gmbh|Synthesis of omega-aminocarboxylic acids and their esters from unsaturated fatty acid derivatives|
DE102010032484A1|2010-07-28|2012-02-02|Evonik Goldschmidt Gmbh|Cells and methods for producing rhamnolipids|
DE102011004465A1|2010-09-10|2012-03-15|Evonik Degussa Gmbh|Process for direct amination of secondary alcohols with ammonia to primary amines|
DE102010043470A1|2010-11-05|2012-05-10|Evonik Degussa Gmbh|Composition of polyamides with low concentration of carboxylic acid amide groups and electrically conductive carbon|
DE102011075162A1|2010-12-08|2012-06-14|Evonik Degussa Gmbh|A process for the homogeneous-catalyzed, highly selective direct amination of primary alcohols with ammonia to primary amines at high volume ratio of liquid to gas phase and / or high pressures|
SG192823A1|2011-02-16|2013-09-30|Evonik Degussa Gmbh|Liquid cation exchanger|
EP2678306B1|2011-02-21|2017-06-21|Evonik Degussa GmbH|Process for the direct amination of alcohols using ammonia to form primary amines by means of a xantphos catalyst system|
DE102011015150A1|2011-03-25|2012-09-27|Evonik Degussa Gmbh|Syntesis of alpha, omega-dicarboxylic acids and their esters from unsaturated fatty acid derivatives|
BR112013026186A2|2011-04-12|2016-07-26|Evonik Degussa Gmbh|continuously operable process for the preparation of carbonyl compounds by means of a catalyst containing a nitroxyl radical|
EP2557176A1|2011-06-15|2013-02-13|Evonik Degussa GmbH|Enzymatic amination|
DE102011110945A1|2011-08-15|2013-02-21|Evonik Degussa Gmbh|Biotechnological synthesis of organic compounds with alkIL gene product|
DE102011110946A1|2011-08-15|2016-01-21|Evonik Degussa Gmbh|Biotechnological synthesis of omega-functionalized carboxylic acids and carboxylic acid esters from simple carbon sources|
DE102011110959A1|2011-08-18|2013-02-21|Evonik Degussa Gmbh|Pichia ciferrii cells and their use|
DE102011084518A1|2011-10-14|2013-04-18|Evonik Industries Ag|Use of a multilayer film with polyamide and polyester layers for the production of photovoltaic modules|
EP2602328A1|2011-12-05|2013-06-12|Evonik Industries AG|Method of Oxidation of alkanes employing an AlkB alkane 1-monooxygenase|
EP2602329A1|2011-12-05|2013-06-12|Evonik Degussa GmbH|Biotechnological production of 3-hydroxyisobutyric acid|
EP2607479A1|2011-12-22|2013-06-26|Evonik Industries AG|Biotechnological production of alcohols and derivatives thereof|
EP2607490A1|2011-12-22|2013-06-26|Evonik Industries AG|Method for improved separation of a hydrophobic organic solution from an aqueous culture medium|
EP2631298A1|2012-02-22|2013-08-28|Evonik Industries AG|Biotechnological method for producing butanol and butyric acid|
DE102012207921A1|2012-05-11|2013-11-14|Evonik Industries Ag|Multi-stage synthesis process with synthesis gas|
EP2674489A1|2012-06-15|2013-12-18|Evonik Industries AG|Biotechnological 2-hydroxyisobutyric acid production|
EP2730655A1|2012-11-12|2014-05-14|Evonik Industries AG|Process for converting a carboxylic acid ester employing BioH-deficient cells|
EP2746397A1|2012-12-21|2014-06-25|Evonik Industries AG|Production of omega amino fatty acids|
DE102013203470A1|2013-03-01|2014-09-04|Evonik Industries Ag|Process for the preparation of ketones from epoxides|EP2602328A1|2011-12-05|2013-06-12|Evonik Industries AG|Method of Oxidation of alkanes employing an AlkB alkane 1-monooxygenase|
EP2631298A1|2012-02-22|2013-08-28|Evonik Industries AG|Biotechnological method for producing butanol and butyric acid|
EP2647696A1|2012-04-02|2013-10-09|Evonik Degussa GmbH|Method for aerobic production of alanine or a compound arising using alanine|
DE102012207921A1|2012-05-11|2013-11-14|Evonik Industries Ag|Multi-stage synthesis process with synthesis gas|
EP2700448A1|2012-08-21|2014-02-26|Evonik Industries AG|Branched fatty acids as liquid cation exchangers|
US20140193871A1|2013-01-04|2014-07-10|Industrial Technology Research Institute|Method for enhancing carbon biofixation|
EP2759598A1|2013-01-24|2014-07-30|Evonik Industries AG|Process for preparing alpha, omega alkanediols|
EP2944697A1|2014-05-13|2015-11-18|Evonik Degussa GmbH|Method of producing nylon|
CA2937594A1|2015-02-26|2016-08-26|Evonik Degussa Gmbh|Alkene production|
CN108473967A|2015-12-17|2018-08-31|赢创德固赛有限公司|The production acetic acid cell of genetic modification|
CN106118398A|2016-06-30|2016-11-16|宁波江东索雷斯电子科技有限公司|A kind of preparation method of renewable synthetic enamel|
US11124813B2|2016-07-27|2021-09-21|Evonik Operations Gmbh|N-acetyl homoserine|
DK3339387T3|2016-12-22|2020-09-21|Evonik Operations Gmbh|COMPOUNDS BASED FROM ADDUCTS WITH ISOCYANATES FOR COATING COMPOSITIONS|
法律状态:
2015-08-27| MK1| Application lapsed section 142(2)(a) - no request for examination in relevant period|
优先权:
申请号 | 申请日 | 专利标题
EP12156493.4||2012-02-22||
EP12156493.4A|EP2631298A1|2012-02-22|2012-02-22|Biotechnological method for producing butanol and butyric acid|
PCT/EP2013/053523|WO2013124401A1|2012-02-22|2013-02-22|Biotechnological method for producing butanol and butyric acid|
[返回顶部]